Report Categories Report Categories

Report Categories

industry Category

All

Total: 2 records, 1 pages

Global Transmission Electron Microscope (TEM) Production, Demand and Key Producers, 2022-2028

date 01 Nov 2022

date Machinery & Equipment

new_biaoQian transmission electron microscope tem production demand producers

Transmission electron microscopy (TEM) is an imaging technology in which electron beams pass through very thinly sectioned specimens. As the electrons are transmitted through the specimen and interact with its structure, an image resolves that is magnified and focused onto an imaging medium, such as photographic film or a fluorescent screen, or captured by a special CCD camera. Because the electrons used in transmission electron microscopy have a very small wavelength, TEMs can image at much higher resolutions than conventional optical microscopes that depend on light beams. Due to their higher resolving power, TEMs play an important role in the fields of virology, cancer research, the study of materials, and in microelectronics research and development.

USD4480.00

Add To Cart

Add To Cart

Global Hot Cathode Transmission Electron Microscope (TEM) Production, Demand and Key Producers, 2022-2028

date 15 Oct 2022

date Machinery & Equipment

new_biaoQian hot cathode transmission electron microscope tem production demand producers

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.

USD4480.00

Add To Cart

Add To Cart

Transmission electron microscopy (TEM) is an imaging technology in which electron beams pass through very thinly sectioned specimens. As the electrons are transmitted through the specimen and interact with its structure, an image resolves that is magnified and focused onto an imaging medium, such as photographic film or a fluorescent screen, or captured by a special CCD camera. Because the electrons used in transmission electron microscopy have a very small wavelength, TEMs can image at much higher resolutions than conventional optical microscopes that depend on light beams. Due to their higher resolving power, TEMs play an important role in the fields of virology, cancer research, the study of materials, and in microelectronics research and development.

USD4480.00

addToCart

Add To Cart

Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a grid. An image is formed from the interaction of the electrons with the sample as the beam is transmitted through the specimen. The image is then magnified and focused onto an imaging device, such as a fluorescent screen, a layer of photographic film, or a sensor such as a scintillator attached to a charge-coupled device.

USD4480.00

addToCart

Add To Cart